Showing posts with label inside international space stationinternational space station interiorinternational space station shuttleinternational space station. Show all posts
Showing posts with label inside international space stationinternational space station interiorinternational space station shuttleinternational space station. Show all posts

This week marks the first anniversary of the NASA Global Hawk project’s initial science mission. On April 7, 2010, Global Hawk No. 872 took off from NASA’s Dryden Flight Research Center on Edwards Air Force Base, Calif., for its first science foray over the Pacific Ocean in the Global Hawk Pacific 2010 - or GloPac - science campaign. Since that first science flight a year ago, NASA's Global Hawks have flown 12 science missions totaling 330 flight hours. The aircraft traveled more than 107,000 nautical miles to as far south as the equator, to 85 degrees north latitude and west toward Hawaii.

"The Global Hawk's early missions have provided some exciting insights into its potential Earth system science use," said Randy Albertson, deputy director of the Airborne Science Program in NASA's Earth Science Division. "It's range and endurance enables observations over parts of the globe that are difficult to reach for extended measurements over vast areas, particularly over the oceans and polar regions."

The first science flight, one of several in the GloPac campaign, lasted just over 14 hours. The high-altitude, long-endurance aircraft flew to an altitude of 60,900 feet and approximately 4,500 nautical miles. The flight path took the aircraft to 150.3 degrees west longitude and 54.6 degrees north latitude, just south of Alaska's Kodiak Island.

NASA Lunar Reconnaissance


NASA's Lunar Reconnaissance Orbiter (LRO) team released Tuesday the final set of data from the mission's exploration phase along with the first measurements from its new life as a science satellite.

With this fifth release of data, striking new images and maps have been added to the already comprehensive collection of raw lunar data and high-level products, including mosaic images, that LRO has made possible. The spacecraft's seven instruments delivered more than 192 terabytes of data with an unprecedented level of detail. It would take approximately 41,000 typical DVDs to hold the new LRO data set.

"The release of such a comprehensive and rich collection of data, maps and images reinforces the tremendous success we have had with LRO in the Exploration Systems Mission Directorate and with lunar science," said Michael Wargo, chief lunar scientist of the Exploration Systems Mission Directorate at NASA Headquarters in Washington.

Among the latest products is a global map with a resolution of 100 meters per pixel from the Lunar Reconnaissance Orbiter Camera (LROC). To enhance the topography of the moon, this map was made from images collected when the sun angle was low on the horizon. Armchair astronauts can zoom in to full resolution with any of the mosaics—quite a feat considering that each is 34,748 pixels by 34,748 pixels, or approximately 1.1 gigabytes

"Because the moon is so close and because we have a dedicated ground station, we are able to bring back as much data from LRO as from all the other planetary missions combined," said LRO Project Scientist Richard Vondrak of NASA's Goddard Space Flight Center in Greenbelt, Md.

LRO's Diviner Lunar Radiometer Experiment is providing new data relating to the moon's surface. These include maps of visual and infrared brightness, temperature, rock abundance, nighttime soil temperature and surface mineralogy. The data are in the form of more than 1700 digital maps at a range of resolutions that can be overlaid easily on other lunar data sets.


The Lyman-Alpha Mapping Project, which collects information to help identify surface water-ice deposits, especially in permanently-shadowed regions of the moon, also has new data. This release includes new maps of far-ultraviolet (FUV) brightness, albedo and water-ice data as well as instrument exposure, illumination and other conditions.

As a complement to the high-resolution digital elevation maps, representing 3.4 billion measurements already released by the Lunar Orbiter Laser Altimeter team, the group is delivering new maps of slope, roughness and illumination conditions. New maps from the Lunar Exploration Neutron Detector, and the latest data from the Cosmic Ray Telescope for the Effects of Radiation and the Miniature Radio Frequency instruments, also are featured.